AQA Combined Science & Chemistry.

Unit 3: Quantitative Chemistry

Year: 10

	Mass in Reactions	S				
1.	Law of conservation of		no atoms are le	ost or made in a chemical reaction, so		
	mass		mass of produc	cts = mass of reactants		
2.	Reactants		go into a react	ion		
3.	Products		come out of a	reaction		
4.	Balanced equation		the number of both sides	atoms of each element is the same on		
5.	Relative Atomic Mass (A _r)	Relative Atomic Mass (A _r)		per		
6.	Relative Formula Mass (M _r)		the sum of the	A _r of all atoms in the compound		
7.	% by Mass in a compound		number of ato Mr	<u>ms x A_r x 100</u>		
8.	Limiting Reactant		a reactant that	is completely used up		
9.	Excess	Excess		need		
	Massuraments in Basstions					
10	Palanco oguinmont usod to moasuro mass (g)		o measure mass (g)			
10.	Range	difference between highest and lowest values		en highest and lowest values		
12	Mean	SI	im of all values			
12.	Wedn	<u>50</u> ni	umber of values			
13.	% Uncertainty	ra	nge x 100			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	m	nean			
	Equations	1				
14	The little number (or CO)-)		how many of that atom		
		2)		eg. 2 oxygen atoms		
15.	The big number (eg 6 CO	2)		multiplies the number of atoms in		
				the compound by that value.		
				eg. 6 Carbon atoms & 12 Oxygen		
				atoms		
16.	The arrow (\rightarrow)			"reacts to form"		
	Units					
17.	Mass			g		
18.	Volume			dm ³		
19.	Concentration			g/ dm ³ or mol/dm ³		
20.	Moles			mol		

	Moles (HT only)		
21.	Mole	a measurement of chemical amounts	
22.	1 mole	6 x 10 ²³ of anything (Avogadro's constant)	
23.	Mass (g) of 1 mole	same as the M _r	
24.	Number of Moles	number of moles = <u>Mass (g)</u>	
		Mr	
25.	The big number (eg	tells you how many moles of something you	
	6 CO ₂)	have	

	Concentration			
26.	Concentration	mass (grams or moles) per given volume		
27.	Volume	quantity of liquid or gas		
28.	Concentration equation	concentration = <u>mass (g</u> or moles)		
		volume (dm³)		

Scientific Method (These can appear in all units)				
29.	Accurate	close to the true value		
30.	Precise	results cluster closely		
31.	Repeatable results	the same person gets similar results		
32.	Reproducible results	a different person gets similar results		
33.	Random Error	unpredictable variation in results		
34.	Systematic Error	results differ from the true value by a		
		consistent amount every time		
35.	Zero Error	systematic error where equipment not		
		calibrated to start at zero		
36.	Hypothesis	theory or prediction		
37.	Method	a step by step guide		
38.	Variable	anything that could change in an		
		investigation		
39.	Independent	the one thing that you decide to change		
	Variable			
40.	Dependent Variable	the variable that is being measured		
41.	Control Variables	variables you keep the same		
42.	Conclusion	what you found out		
43.	Evaluation	strengths and weaknesses of the method		